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6 Detailed Derivation of Mutual Information of Normals

In this section, we derive the mutual information of normals and explain our
approximation.

The surface normals can be written as

N(pi) = (Ni
x,Ni

y,Ni
z),

N(pj) = (Nj
x,Nj

y,Nj
z).

When perturbing the normals by a random noise n ∈ RD sampled from SD−1,
according to Talor expansion, we have

N̂(pi) = N(pi) + γn · ∂F(oi, vi; θ
D + n)

∂θD
,

N̂(pj) = N(pj) + γn · ∂F(oj , vj ; θ
D + n)

∂θD
,

where F is the function to calculate the normal information along the ray (weighted
sum of the parameter gradients). Let ∂Fi/∂θ

D = (γAxAx, γAyAy, γAzAz), and
∂Fj/∂θ

D = (γBxBx, γByBy, γBzBz), where γ denotes the length of the vector,
and the normal’s partial vectors are all unit vectors, i.e., Ax, Ay, Az, Bx, By, Bz ∈
RD−1. The computation of mutual information can be written as

I(N̂(pi), N̂(pj)) =H(N̂(pi))−H(N̂(pi) | N̂(pj))
=H(γn · (γAxAx, γAyAy, γAzAz))

−H(γn · (γAxAx, γAyAy, γAzAz) | γn · (γBxBx, γByBy, γBzBz)).

Starting from a simple situation, we compute the entropy of γAxγn ·Ax. The
entropy of a distribution shifts by the logarithm of the scaling factor when it’s
scaled. Therefore, we have

H(γAxγn ·Ax) = log(γAxγ) +H(SD−1),

where H(SD−1) is a constant. Then, for the joint entropy of two partial vectors:

H(γAxγn ·Ax, γAyγn ·Ay) = H(γAxγn ·Ax) +H(γAyγn ·Ay | γAxγn ·Ax),

where

H(γAyγn ·Ay | γAxγn ·Ax) =

∫
s

H(γAyγn ·Ay | γAxγn ·Ax = s)p(s)ds.



16 X. Wang & S. Dong et al.

When γAxγn ·Ax = s

γAyγn ·Ay =γAyγ(⟨Ax, Ay⟩Ax + (Ay − ⟨Ax, Ay⟩Ax))

· (⟨n,Ax⟩Ax + (n− ⟨n,Ax⟩Ax))

=γAyγ(⟨n,Ax⟩ · ⟨Ax, Ay⟩+ (Ay − ⟨Ax, Ay⟩Ax) · (n− ⟨n,Ax⟩Ax)),

so that

H(γAyγn ·Ay | γAxγn ·Ax = s)

=H(γAyγ ∗ (⟨n,Ax⟩ · ⟨Ax, Ay⟩
+ (Ay − ⟨Ax, Ay⟩Ax) · (n− ⟨n,Ax⟩ ·Ax)) | γAxγn ·Ax = s)

= log(γAyγ sin(Ax, Ay) sin(n,Ax)) +H(SD−2).

We have

H(γAyγn ·Ay | γAxγn ·Ax)

=

∫
s

H(γAyγn ·Ay | γAxγn ·Ax = s)p(s)ds

=

∫
s

(log(γAyγ sin(Ax, Ay) sin(n,Ax)) +H(SD−2))p(s)ds

=H(SD−2) + log(γAyγ sin(Ax, Ay)) +

∫
s

log(sin(n,Ax))p(s)ds

= log(γAyγ sin(Ax, Ay)) + const.

In more general terms, we denote Ay − ⟨Ax, Ay⟩Ax as P (Ay, Ax), which rep-
resents subtracting the component in the Ax direction from the Ay. Therefore,
the equation above can be written as

H(γAyγn ·Ay | γAxγn ·Ax) = log(γAyγ|P (Ay, Ax)|) + const.

H(γAxγn ·Ax, γAyγn ·Ay)

=H(γAxγn ·Ax) +H(γAyγn ·Ay | γAxγn ·Ax)

= log(γAxγ) + log(γAyγ|P (Ay, Ax)|) + const.

Similarly, we can infer that

H(γAxγn ·Ax, γAyγn ·Ay, γAzγn ·Az)

= log(γAxγ) + log(γAyγ|P (Ay, Ax)|) + log(γAzγ|P (Az, (Ax, Ay))|) + const.

H(γAxγn ·Ax, γAyγn ·Ay, γAzγn ·Az | γn · γBxγBx, γByγBy, γBzγBz)

= log(γAxγ|P (Ax, (Bx, By, Bz))|) + log(γAyγ|P (Ay, (Ax, Bx, By, Bz))|)
+ log(γAzγ|P (Az, (Ax, Ay, Bx, By, Bz))|) + const.
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By combining them, we obtain

I(N̂(pi), N̂(pj))

=H(N̂(pi))−H(N̂(pi) | N̂(pj))
=H(γn · (γAxAx, γAyAy, γAzAz))−
H(γn · (γAxAx, γAyAy, γAzAz) | γn · (γBxBx, γByBy, γBzBz))

= log(γAxγ)

+ log(γAyγ|P (Ay, Ax)|)
+ log(γAzγ|P (Az, (Ax, Ay))|)
− log(γAxγ|P (Ax, (Bx, By, Bz))|)
− log(γAyγ|P (Ay, (Ax, Bx, By, Bz))|
− log(γAzγ|P (Az, (Ax, Ay, Bx, By, Bz))|))
+ const.

= log
|P (Ay, Ax)||P (Az, (Ax, Ay))|

|P (Ax, (Bxyz))||P (Ay, (Ax, Bxyz))||P (Az, (Ax, Ay, Bxyz))|
+ const.

Bxyz represent the space constructed by Bx, By and Bz.
Restricted by computational complexity, we approximate it by

I(N̂(pi), N̂(pj))

≈ log
1

|P (Ax, Bx)||P (Ay, By)||P (Az, Bz)|
+ const.

It only considers the relationship of corresponding parts from the weighted sum
with respect to parameter gradients. To further simplify, we used a simple for-
mula which computes the cosine similarity of their concatenated gradients as
described in main paper.

7 More Information on Datasets and Evaluation Metrics

Datasets. We report the statistics of the scenes in our evaluation in Tab. 5.
In addition to the number of images, we calculate the average proportion of
overlapping pixels between adjacent images.

Evaluation metrics. We use the L2 Chamfer distance and F-score to evaluate the
reconstruction results. Both the two metrics are computed on top of the meshes:
the ground truth mesh and the reconstructed one. The Chamfer distance is
computed as:

cd(S1, S2) =
1

|S1|
∑
x∈S1

min
y∈S2

||x− y||22 +
1

|S2|
∑
x∈S2

min
y∈S1

||x− y||22. (13)
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Table 5: Statistics of the scenes in our evaluation on ScanNet++ and Replica.

Datasets ScanNet++ Replica

Scene name 0a7c 0a18 6ee2 7b64 56a0 9460 a08d e0ab office0 office1 room0 room1
Number of images 67 63 75 78 72 79 85 57 60 60 60 60
Overlaps (our split) 0.82 0.82 0.75 0.77 0.73 0.80 0.83 0.65 0.89 0.91 0.90 0.90
Original overlaps 0.96 0.96 0.98 0.95 0.90 0.97 0.98 0.94 0.99 0.99 0.99 0.99

Reconstruction Cropped reconstruction

Ground truth Cropped ground truth

Compute
Chamfer & F-score

Fig. 6: Cropped reconstruction and ground truth with training viewpoints.

In this case, S1 and S2 represent the two point sets sampled from the ground
truth mesh and the reconstruction, respectively.

The F-socre is computed as:

fs(S1, S2) = 2 · precision(S1, S2)× recall(S1, S2)

precision(S1, S2) + recall(S1, S2)
. (14)

The values for precision and recall are determined by the proportion of sampled
points, where the distance to the nearest point in another mesh is less than 2%
of the scene length. Precision is calculated from the reconstruction to the ground
truth, while recall is calculated in the opposite direction.

We sampled 50,000 points from each original mesh to calculate the metrics.
To ensure a fair evaluation, we remove all parts of the geometry that are not
visible from the training views, as shown in Figure 6.

8 More Implementation Details for Each Baseline

The numbers reported in Table 4 in the main paper were measured on an
NVIDIA H800. For all the methods we apply our mutual information shaping
to their official codes at GitHub.
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– NeuS [30]+: https://github.com/Totoro97/NeuS. The network is trained by
160k iterations.

– VolSDF [37]+: https://github.com/lioryariv/volsdf. The network is trained
by 150k iterations.

– GeoNeuS [8]+: https://github.com/GhiXu/Geo-Neus. We use adjacent 8 im-
ages (4 before and 4 after) as reference perspectives. The network is trained
by 150k iterations.

– I2-SDF [44]+: https://github.com/jingsenzhu/i2-sdf. We discard the normal
and depth supervision. The network is trained by 150k iterations.

– NeuRIS [29]+: https://github.com/jiepengwang/NeuRIS. The network is trained
by 160k iterations.

– MonoSDF [40]+: https://github.com/autonomousvision/monosdf. We set the
decay for the normal and depth loss at 30k iterations. We observed that full
use causes the method to degenerate into estimation fusion, rather than re-
construction from posed images. The network is trained by 100k iterations.

– Neuralangelo [13]+: https://github.com/NVlabs/neuralangelo. We set the
hash encoding dictionary size to 20 and the feature dimension to 4. This is
to ensure VRAM consumption stays at the same level as with other methods.
The network is trained by 150k iterations.

Table 6: λM values.

Method Value

NeuS+ 1.0
VolSDF+ 0.3
GeoNeuS+ 1.0
I2-SDF+ 0.3
NeuRIS+ 1.0
MonoSDF+ 0.5
Neuralangelo+ 1.0

For different baselines, we use different weights λM to balance the original
training and our mutual information shaping. The detailed weights are reported
in Table 6. For all the experiments in the main paper, we set the positive sample
threshold with βS = 0.65 and βG = 0.99 for DINO [4] and normal features [1],
respectively.

9 Additional Comparisons

In the main paper, we exclude GeoNeuS [8]+ and MonoSDF [40]+ from the
Replica dataset. This is because there are no readily available structure-from-
motion models for GeoNeuS, and MonoSDF’s training and ablation studies are
based on Replica. Here, we report their performance in Tab. 7.
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Table 7: Quantitative results on the Replica dataset.

office0 office1 room0 room1 Mean

Chamfer (m)↓ GeoNeuS [8]+ 0.0230-0.0206 0.0136 -0.0098 0.0396 -0.0354 0.0024 -0.0003 0.0196-0.0165
MonoSDF [40]+ 0.0028+0.001 0.0047 -0.0006 0.0041 -0.0003 0.0044 -0.0007 0.0040-0.0004

F-score ↑ GeoNeuS [8]+ 0.891+0.083 0.910 +0.039 0.896 +0.085 0.977 +0.007 0.919+0.054
MonoSDF [40]+ 0.962+0.004 0.901 +0.021 0.982 +0.004 0.946 +0.016 0.948+0.012

For GeoNeuS, we utilize COLMAP [25] to build the structure-from-motion
models. We input known camera parameters and perform only triangulation. The
table illustrates the advantages of our method to enhance GeoNeuS. Similarly,
MonoSDF+ also benefits from our mutual information shaping.

10 Additional Analyses

Effectiveness of the semantic features. We examine the effectiveness of the
semantic feature DINO by replacing it with a semantic segmentation model,
SAM [12]. The results are shown in Tab. 8. As observed, employing positive-
negative pairs with SAM can enhance the baseline performance in some instances
(NeuRIS), but it can also hurt performance in other cases (MonoSDF). On the
contrary, using DINO features consistently enhances both the two baselines.
Therefore, we apply DINO in our method and report the results with DINO
features accordingly in the main paper.

Table 8: Ablation study with image segmentation model - SAM [12].

Chamfer (m)↓ F-score ↑
6ee2 7b64 9460 Mean 6ee2 7b64 9460 Mean

NeuRIS [29] 0.029 0.070 0.405 0.168 0.65 0.69 0.24 0.53
NeuRIS+ (SAM) 0.038 0.042 0.337 0.139 0.69 0.73 0.30 0.57
NeuRIS+ (SAM+normal) 0.053 0.030 0.412 0.165 0.68 0.77 0.22 0.56
NeuRIS+ (Full) 0.044 0.033 0.198 0.092 0.66 0.76 0.41 0.61

MonoSDF [40] 0.020 0.016 0.046 0.028 0.81 0.79 0.88 0.83
MonoSDF+ (SAM) 0.527 0.018 0.035 0.193 0.63 0.77 0.86 0.75
MonoSDF+ (SAM+normal) 0.062 0.018 0.029 0.037 0.77 0.80 0.88 0.82
MonoSDF+ (Full) 0.014 0.020 0.023 0.019 0.85 0.85 0.93 0.87

Performance of first-order method. In Tab. 9, we report the results of directly
aligning the normal directions (denoted by FO) among positive pairs (i.e., cor-
related surfaces). It is implemented by replacing LM with

L′
M = − log(

∑
exp(|| cos(Ni,Ni+||)), (15)
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Table 9: Ablation study for the first-order method with correlated normals.

6ee2 7b64 9460 Mean

C
ha

m
fe

r↓ NeuRIS+ (FO) 0.586 0.490 0.603 0.560
NeuRIS+ (Full) 0.044 0.033 0.198 0.092
MonoSDF+ (FO) 1.207 1.024 1.163 1.132
MonoSDF+ (Full) 0.014 0.020 0.023 0.019

F
-s

co
re
↑ NeuRIS+ (FO) 0.43 0.34 0.21 0.33

NeuRIS+ (Full) 0.66 0.76 0.41 0.61
MonoSDF+ (FO) 0.59 0.49 0.57 0.55
MonoSDF+ (Full) 0.85 0.85 0.93 0.87

which is similar to Eq. 11 but removes the calculation of second-order and
the part of negative pairs. We notice performance drops, and the results appear
over-smoothed. This is mainly because a) the positive pairs have similar but not
identical directions, and b) the information from negative pairs is not utilized.

Table 10: Quantitative results on the DTU dataset.

24 37 40 Mean

C
ha

m
fe

r↓ NeuRIS [29] 0.980 3.674 0.865 1.840
NeuRIS+ 1.023 3.341 0.663 1.676
MonoSDF [40] 0.876 1.773 0.657 1.102
MonoSDF+ 0.837 1.816 0.626 1.093

More discussions on limitation. While our method does not rely on Manhat-
tan world or near-planar assumptions, we have found that its effectiveness on
object-level scenes is reduced. In Tab 10, we present the quantitative results on
object-level inward-facing scenes from the DTU dataset. The experiments are
carried out in the first three scenes with two baselines, using the same hyper-
parameter settings as those used in the indoor scenes. In these scenes, we note
that DINO features or monocular normals sometimes produce inconsistent pairs,
which could affect the effectiveness of our mutual information shaping.
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